Materia: Matemática de Octavo

Tema: Operaciones con Conjuntos

I. INTERSECCIÓN DE CONJUNTOS

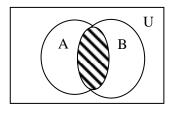
Dados dos conjuntos A y B, el conjunto de todos los elementos que pertenecen al conjunto A y al conjunto B simultáneamente, lo denominamos *Intersección* de A y B. Esto es:

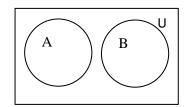
$$A \cap B = \{x \mid x \in A \land x \in B\}$$

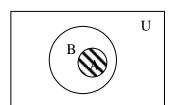
y leemos:

"A intersección B es el conjunto formado por los elementos x tal que x pertenece a A y x pertenece a B"

Gráficamente puede ocurrir que:







<u>Ejemplo</u>: Los conjuntos $A = \{7,8,9,10,11,12\}$ y $B = \{5,6,9,11,13,14\}$

La intersección de ambos conjuntos es: $A \cap B = \{9, 11\}$

Propiedades:

Sean los conjuntos A y B, entonces se verifica:

(1.) Conmutativa: $A \cap B = B \cap A$

(2.) Asociativa: $A \cap B \cap C = (A \cap B) \cap C = A \cap (B \cap C)$

(3.) Idempotencia: $A \cap A = A$ y $A \cap \emptyset = \emptyset$

Observaciones:

- ✓ Puede ocurrir que el conjunto intersección $A \cap B$ no tenga elementos, en cuyo caso diremos que A y B son conjuntos *disjuntos o disyuntos.*
- ✓ El *conjunto vacío* es aquel que no tiene elementos y lo denotamos mediante la letra
 Ø. Está incluido en cualquier conjunto dado.

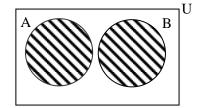
II. UNIÓN DE CONJUNTOS

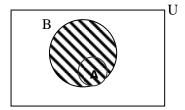
Dados dos conjuntos A y B, el conjunto de todos los elementos que pertenecen al conjunto A o al conjunto B, lo denominamos *Unión o reunión* de A y B. Esto es:

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

y leemos: "A unión B es el conjunto formado por los elementos x tal que x pertenece a A o x pertenece a B"

Gráficamente puede ocurrir que:





<u>Ejemplo:</u> Los conjuntos $A = \{3,4,5,8,9\}$ y $B = \{5,7,8,9,10\}$

La unión de ambos conjuntos es: $A \cup B = \{3,4,5,7,8,9,10\}$

Propiedades:

Sean los conjuntos A y B, entonces se verifica:

(1.) Conmutativa: $A \cup B = B \cup A$

(2.) Asociativa: $A \cup B \cup C = (A \cup B) \cup C = A \cup (B \cup C)$

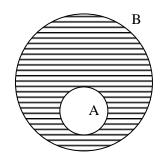
(3.) Idempotencia: $A \cup A = A$ y $A \cup \emptyset = A$

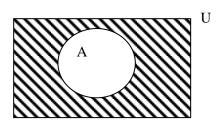
III. CONJUNTO COMPLEMENTARIO

Sean A y B conjuntos tales que el conjunto A es subconjunto o parte del conjunto B. El conjunto de todos los elementos que son de B pero no de A, se denomina *Conjunto Complementario* del conjunto A respecto a B. Esto es:

$$A^c = \{x \mid x \in B \land x \notin A\}$$
 o también $A^c = U - A$

y leemos: "A complemento es el conjunto formado por los elementos x tal que x pertenece a B y x no pertenece a A"





<u>Ejemplo</u>: Si $U = \{1,2,3,4,5,6,7,8,9,10\}$ y $A = \{3,4,6,7\}$ entonces $A^c = \{1,2,5,8,9,10\}$

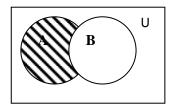
IV. <u>DIFERENCIA DE CONJUNTOS</u>

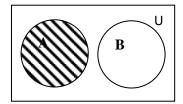
Dados los conjuntos A y B, se define la diferencia:

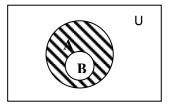
$$A - B = \{x / x \in A \land x \notin B\}$$

y leemos: "A menos B es el conjunto formado por los elementos x tal que x pertenece a A y x no pertenece a B"

Gráficamente puede ocurrir que:







<u>Ejemplo</u>: En los conjuntos $C = \{u, v, x, y, z\}$ y $D = \{s, t, z, v, p, q\}$, entonces: $C - D = \{u, x, y\}$

V. <u>DIFERENCIA SIMÉTRICA</u>

Dados los conjuntos A y B, llamaremos *Diferencia Simétrica* de A y B al conjunto:

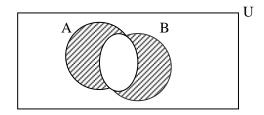
$$A \Delta B = \{x \in A \cup B / x \in A \lor x \in B\}$$

Nota: la diferencia entre $A \cup B$ y $A \Delta B$, es que en $A \cup B$ permitimos la posibilidad a un elemento de pertenecer a A y B, mientras que en $A \Delta B$ no lo permitimos.

entonces:

$$A \Delta B = (A \cup B) - (A \cap B)$$

Gráficamente:



Ejemplo: si $A = \{1,3,4,5,6,7,20,30\}$ y $B = \{2,6,20,40,50\}$

La diferencia simétrica es:

$$A \Delta B = \{1,2,3,4,5,6,7,20,30,40,50\} - \{6,20\} = \{1,2,3,4,5,7,30,40,50\}$$

EJERCICIOS PROPUESTOS

- 1. Dados los conjuntos $A = \{a, b, c, d, e, f\}, B = \{d, e, f, g\}, C = \{b, c, d, e\}.$ Hallar:
 - (a.) A B

(b.) B^C

(c.) $(A-C)\cap (A-B)$

(d.) $B \cap C$

(e.) $(A \cup B) - C$

(f.) $(B \cup C) - (A - B)$

(g.) $A \cup B$

(h.) $(A - C)^{C}$

(i.) $(B \cap C)^C$

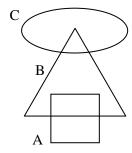
- (j.) $A (B \cap C)$
- $(\mathsf{k.}) \quad (A \cup B)^{\mathcal{C}}$

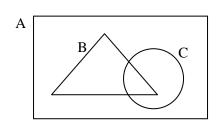
(I.) $A \cap B \cap C$

(m.) $A \Delta B$

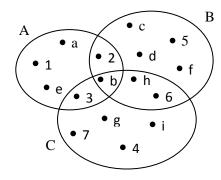
(n.) $A \cap (B \Delta C)$

- (o.) $B \Delta (A \cup C)$
- 2. Dados los siguientes diagramas, colorear separadamente cada uno de los ejercicios del No. 1:

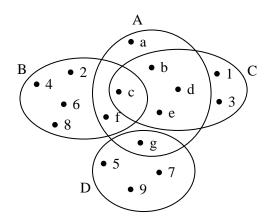




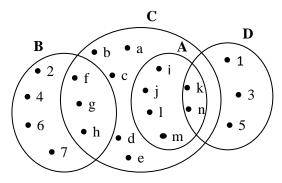
- 3. Determine las siguientes operaciones entre conjuntos
 - (a.) $\mathbb{Q}^* \cap \mathbb{Z}$
 - (b.) $\mathbb{Z} \cup \mathbb{Q}$
 - (c.) ℤ_− ∪ ℕ
 - (d.) $\mathbb{Z}^* \cap \mathbb{Q}_+$
 - (e.) $\mathbb{Z}^* \cup \{0\}$
- 4. Determine las siguientes operaciones entre conjuntos:



- (a.) $A \cap B$
- (b.) $(B \cap C)^c$
- (c.) $\mathcal{C} \cup A$
- (d.) $(A-B)^c$



- (e.) $(A \cap C) \cup B$
- (f.) $(A \cup D) D^c$
- (g.) C^c
- (h.) $C\Delta B$



- (i.) $(A \cap C) \cup B$
- (j.) $(A \cap C \cap D) \cup (B \cap C)$
- (k.) $(A\Delta D) \cup (B\Delta C)$
- (1.) $(A C)^c$
- 5. Representa mediante un Diagrama de Venn las siguientes operaciones entre conjuntos
 - (a.) $x \in (A \cap B) \cup (C \cap D)$
 - (b.) $y \in A \cup B \cup C$
 - (c.) $a \in (B \cap A) \cup C$
 - (d.) $z \in A \cap B \cap C$
 - (e.) $b \in (A \cup C) D$
- 6. Sea *A* el conjunto que representa a los estudiantes de una universidad que estudian Inglés, *B* el conjunto de los alumnos de la misma universidad que estudian Arquitectura y *C* el conjunto de los alumnos que estudian en la universidad.

Interprete:

- (a.) $(A \cap B) \cup C$
- (b.) $A \cup (B \cap C)$
- (c.) $A (B \cap C)$
- (d.) $C (A \cup B)$
- (e.) $B (A \cap C)$

RESPUESTAS A LOS EJERCICIOS PROPUESTOS

1.

(a.)
$$A - B = \{a, b, c\}$$

(b.)
$$B^{C} = \{a, b, c\}$$

(c.)
$$(A - C) \cap (A - B) = \{a, f\} \cap \{a, b, c\} = \{a\}$$

(d.)
$$B \cap C = \{d, e\}$$

(e.)
$$(A \cup B) - C = \{a, f, d, e, b, c, g\} - \{b, c, d, e\} = \{a, f, g\}$$

(f.)
$$(B \cup C) - (A - B) = \{f, d, e, b, c, g\} - \{a, b, c\} = \{f, d, e, g\}$$

(g.)
$$A \cup B = \{a, f, d, e, b, c, g\}$$

(h.)
$$(A - C)^C = \{g\}$$

(i.)
$$(B \cap C)^C = \{a, b, c, f, g\}$$

(j.)
$$A - (B \cap C) = \{a, f, d, e, b, c\} - \{d, e\} = \{a, f, b, c\}$$

$$(k.) \quad (A \cup B)^{\mathcal{C}} = \emptyset$$

(I.)
$$A \cap B \cap C = \{d, e\}$$

(m.)
$$A \Delta B = (A \cup B) - (A \cap B) = \{a, f, d, e, b, c, g\} - \{d, f, e\} = \{a, b, c, g\}$$

(n.)
$$A \cap (B \triangle C) = \{a, f, d, e, b, c\} \cap \{b, c, f, g\} = \{b, c, f\}$$

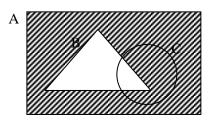
(o.)
$$B \Delta (A \cup C) = [B \cup (A \cup C)] - [B \cap (A \cup C)] = \{a, f, d, e, b, c, g\} - \{d, f, e\}$$

= $\{a, b, c, g\}$

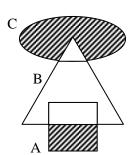
2.

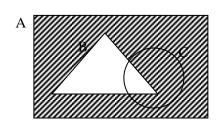
(a.)
$$A - B$$

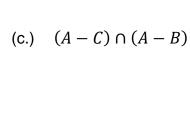
C B

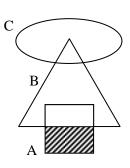


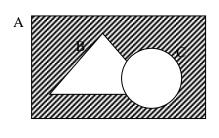
(b.)
$$B^{C}$$



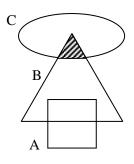


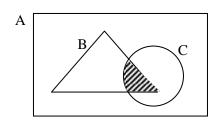




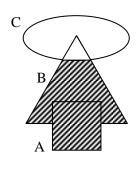


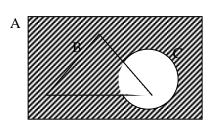
(d.) $B \cap C$



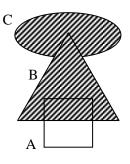


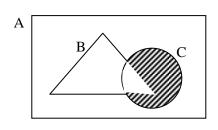
(e.) $(A \cup B) - C$



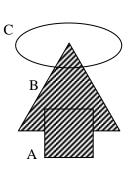


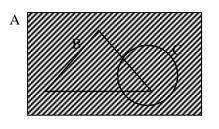
 $(f.) \quad (B \cup C) - (A - B)$

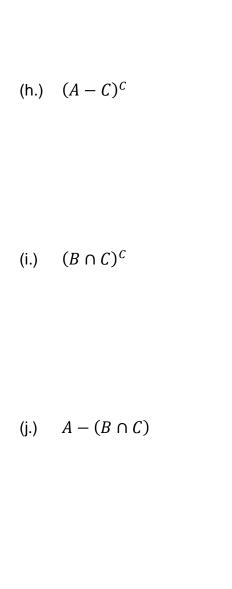


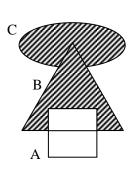


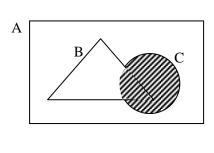
(g.) $A \cup B$

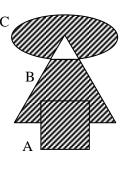


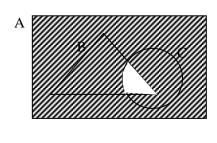


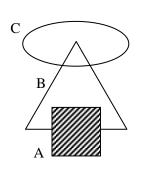


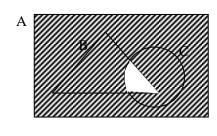


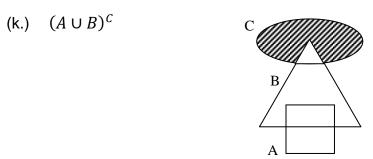


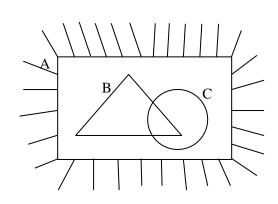


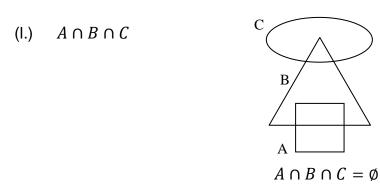


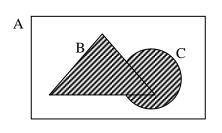




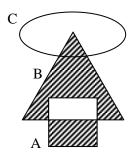


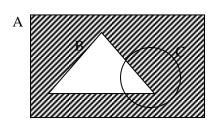




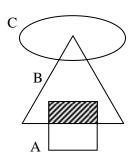


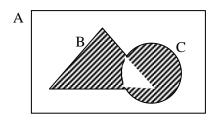
(m.) $A \Delta B$



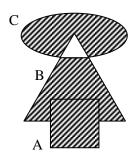


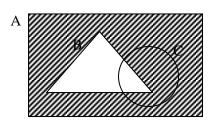
(n.) $A \cap (B \Delta C)$





(o.)
$$B \Delta (A \cup C)$$





3.

(a.)
$$\mathbb{Q}^* \cap \mathbb{Z} = \mathbb{Z}^*$$

(b.)
$$\mathbb{Z} \cup \mathbb{Q} = \mathbb{Q}$$

(c.)
$$\mathbb{Z}_{-} \cup \mathbb{N} = \mathbb{Z}$$

(d.)
$$\mathbb{Z}^* \cap \mathbb{Q}_+ = \mathbb{Z}_+$$

(e.)
$$\mathbb{Z}^* \cup \{0\} = \mathbb{Z}$$

4.

(a.)
$$A \cap B = \{2, b\}$$

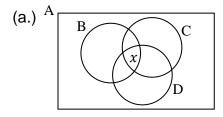
(b.)
$$(B \cap C)^c = \{a, 1, 2, e, 3, c, 5, d, f, g, 7, 4, i\}$$

(c.)
$$C \cup A = \{a, 1, 2, b, e, 3, h, 6, g, 7, 4, i\}$$

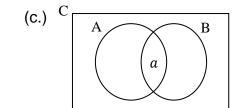
(d.)
$$(A - B)^c = \{2,3,b,c,5,d,f,h,6,g,7,4,i\}$$

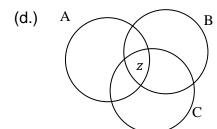
- (e.) $(A \cap C) \cup B = \{c, b, d, e\} \cup \{4, 2, 6, 8, c, f\} = \{c, b, d, e, 4, 2, 6, 8, f\}$
- (f.) $(A \cup D) D^c = \{a, b, c, d, e, f, g, 5, 7, 9\} \{4, 2, 6, c, f, 8, a, b, d, e, 1, 3\} = \{g, 5, 7, 9\}$
- (g.) $C^c = \{4,2,6,8,f,a,g,5,7,9\}$
- (h.) $C\Delta B = \{4,2,6,8,f,b,d,e,1,3\}$
- (i.) $(A \cap C) \cup B = \{4,2,6,7,f,g,h,i,j,l,m,k,n\}$
- (j.) $(A \cap C \cap D) \cup (B \cap C) = \{4,2,6,7,f,g,h,b,a,c,d,e,i,j,l,m,k,n\}$
- (k.) $(A\Delta D) \cup (B\Delta C) = \{i, j, l, m, 1, 3, 5\} \cup \{2, 4, 6, 7, b, a, c, d, e, i, j, l, m, n, k\}$ = $\{2, 4, 6, 7, b, a, c, d, e, i, j, l, m, n, k, 1, 3, 5\}$
- $(I.) \quad (A-C)^c = \emptyset$

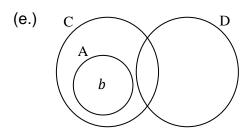
5. Por ejemplo:



(b.) A B C y







6.

- (a.) Alumnos que estudian en la universidad
- (b.) Alumnos que estudian inglés y arquitectura simultáneamente
- (c.) Alumnos que estudian inglés pero no arquitectura
- (d.) Alumnos que estudian en la universidad que no estudian inglés y arquitectura simultáneamente
- (e.) Alumnos que estudian arquitectura pero que no estudian inglés