Ácidos oxácidos

El serrín que se utiliza en los casos de derrame de ácido nítrico produce humos peligrosos de óxido de nitrógeno que se pueden reconocer por su color entre marron y amarillo.

<u>laquimicajjrb.blogspot.com</u>

Son compuestos ternarios formados por hidrógeno, no metal y oxígeno. Tienen carácter ácido. Se componen de un anión poliatómico oxigenado y de cationes hidrógeno. Tienen la fórmula: $H_aX_bO_c$. El elemento X es un no metal o un elemento de transición en su estado de oxidación más alto. Dado que el oxígeno siempre es -2 y el hidrógeno +1, X actúa con un número de oxidación positivo que se calcula del siguiente modo:

Número de oxidación del elemento X = (2c-a)/b

Ácidos oxácidos, se puede decir también que son combinaciones ternarias formadas por oxígeno, hidrógeno y un no metal (a veces es un metal de transición, como el cromo, manganeso, wolframio, etc.).

En general, se pueden considerar derivados de la adición de agua a los óxidos de los no metales, simplificando después los subíndices.

> Para aprender a formular este tipo de compuestos hay que conocer los números de oxidación con los que los no metales pueden actuar.

Halóxenos	+1, +3, +5, +7
Calcóxenos	+4, +6
Nitroxenoideos	+3, +5
Carbonoideos	4

Cuando un elemento presenta más de un número de oxidación posible se emplean unos prefijos y unos sufijos concretos. Como el número más elevado de posibles números de oxidación para un elemento (en los casos que vamos a estudiar) es cuatro nos referiremos a estos casos.

Para el número de oxidación MÁS BAJO se antepone al nombre del elemento central el prefijo HIPO- (del griego hypo, inferior) y detrás del nombre el sufijo -OSO.

Para el número de oxidación BAJO se añade al nombre del elemento central el sufijo -OSO.

Para el número de oxidación ALTO se añade al nombre del elemento central el sufijo -ICO.

Para el número de oxidación MÁS ALTO se añade el prefijo PER- (del griego hyper, superior) y el sufijo -ICO

6	-
8	-
8	
8	-
8	
0	
0	
0	
8	
8	
0	
0	
8	
8	
0	
8	
8	1
0	1
0	1
0	L
8	1
8	1
0	1
8	1
8	_
8	1
0	1
0	1
0	
0	1
0	1
0	1
6	1
0	
ē	1
ē	1
6	
ě	F
c	1
ē	1

Número de oxidación	Ácido
Más alto	perico
Alto	-ico
Bajo	-oso
Más bajo	hipooso

Otros prefijos que debemos conocer son los prefijos meta- y orto- : De algunos ácidos se conocen dos formas, que se diferencian en el número de hidrógenos y oxígenos, de forma que parecen diferenciarse en un determinado número de moléculas de agua H2O. Por ejemplo, tenemos dos ácidos peryódicos: el HIO4 y el H₅IO₆, éste es como si tuviera 2 moléculas de agua más que el primero. El prefijo meta- se utiliza para indicar el ácido que tiene menor contenido en agua y el prefijo orto- se utiliza para indicar el ácido que tiene mayor contenido en agua. HIO4 es el ácido metaperyódico y H₅IO₆ es el ácido ortoperyódico.

Los oxácidos más comunes son:

HALÓGENOS

Números de oxidación: +1, +3, +5, +7. Dan oxácidos o Cl, Br, I pero no el F.

Halóxenos

Nº de oxidación (+1): HClO	ác. hipocloroso
Nº de oxidación (+3): HClO ₂	ác. cloroso
Nº de oxidación (+5): HClO ₃	ác. clórico
Nº de oxidación (+7): HClO ₄	ác. perclórico

El oxácido correspondiente al número de oxidación +3 para el yodo (I) no tiene existencia real y tampoco se conoce ningún derivado suyo.

• Oxoácidos del grupo de los halógenos: Cl, Br, I (+1, +3, +5, +7)

•
$$Cl_2O + H_2O \rightarrow HClO$$

•
$$Cl_2O_3 + H_2O \rightarrow HClO_2$$

•
$$Cl_2O_5 + H_2O \rightarrow HClO_3$$

•
$$Cl_2O_7 + H_2O \rightarrow HClO_4$$

Compuesto	Sistemática	Tradicional
HCIO	oxoclorato (I) de hidrógeno	ácido hipocloroso
HClO ₂	dioxoclorato (III) de hidrógeno	ácido cloroso
HCIO ₃	trioxoclorato (V) de hidrógeno	ácido clórico
HClO ₄	tetraoxoclorato (VII) de hidrógeno	ácido perclórico

CALCÓGENOS

Calcóxenos o anfígenos

Números de oxidación: +4, +6. Estudiaremos los oxácidos del S, Se, Te.

Nº de oxidación (+4): H ₂ SO ₃	ác. sulfuroso
Nº de oxidación (+6): H ₂ SO ₄	ác. sulfúrico

• Oxoácidos del grupo de los anfígenos: S, Se, Te (+2, +4, +6)

•
$$SO + H_2O \rightarrow H_2SO_2$$

$$\bullet SO_2 + H_2O \rightarrow H_2SO_3$$

$$\cdot$$
 SO₃ + H₂O \rightarrow H₂SO₄

Compuesto	Sistemática	Tradicional
H ₂ SO ₂	dioxosulfato (II) de hidrógeno	ácido hiposulfuroso
H ₂ SO ₃	trioxosulfato (IV) de hidrógeno	ácido sulfuroso
H ₂ SO ₄	tetraoxosulfato (VI) de hidrógeno	ácido sulfúrico

NITROGENOIDES

Números de oxidación: +3, +5. Estudiaremos los oxácidos del N, P, As.

Nitroxenoideo

Nº de oxidación (+3): HNO ₂	ác. nitroso
Nº de oxidación (+5): HNO ₃	ác. nítrico

• Oxoácidos del grupo de los nitrogenoideos: N (+1, +3, +5), P (+1, +3, +5), As, Sb (+3, +5)

•
$$N_2O + H_2O \rightarrow HNO$$

•
$$N_2O_3 + H_2O \rightarrow HNO_2$$

•
$$N_2O_5 + H_2O \rightarrow HNO_3$$

Compuesto	Sistemática	Tradicional
HNO	oxonitrato (I) de hidrógeno	ácido hiponitroso
HNO ₂	dioxonitrato (III) de hidrógeno	ácido nitroso
HNO ₃	trioxonitrato (V) de hidrógeno	ácido nítrico

Hay que recordar que los oxácidos de P e As son distintos a los de N ya que el número de H que llevan es 3. Estos ácidos con dos hidrógenos más, se denominan ácidos orto-, aunque no es muy utilizado dicho prefijo, pues los ácidos meta no se conocen.

Nº de oxidación (+3): H ₃ PO ₃	ác. fosforoso o fosfónico
Nº de oxidación (+5): H ₃ PO ₄	ác. fosfórico

El P, As y Sb pueden formar más de un oxoácido con el mismo número de oxidación.

•
$$P_2O_5 + H_2O \rightarrow HPO_3$$

•
$$2 H_3PO_4 + H_2O \rightarrow H_4P_2O_7$$

Compuesto	Sistemática	Tradicional
HPO ₃	trioxofosfato (V) de hidrógeno	ácido metafosfórico
H ₄ P ₂ O ₇	heptaoxodifosfato (V) de hidrógeno	ácido difosfórico
H ₃ PO ₄	tetraoxofosfato (V) de hidrógeno	ácido ortofosfórico

CARBONOIDEOS

CARBONO Y SILICIO: número de oxidación: +4.

Nº de oxidación (+4): H ₂ CO ₃	ác. carbónico (?)
Nº de oxidación (+4): H ₄ SiO ₄	ác. ortosilícico

• Oxoácidos del grupo de los carbonoideos: C (+4), Si (+4) Mientras que el C sólo forma un oxoácido (que es inestable), el Si puede formar tres.

$$\cdot CO_2 + H_2O \rightarrow H_2CO_3$$

Compuesto	Sistemática	Tradicional
H ₂ CO ₃	trioxocarbonato (IV) de hidrógeno	ácido carbónico

•
$$SiO_2 + H_2O \rightarrow H_2SiO_3$$

•
$$H_2SiO_3 + H_2O \rightarrow H_4SiO_4$$

• 2
$$H_4SiO_4$$
 - $H_2O \rightarrow H_6Si_2O_7$

Compuesto	Sistemática	Tradicional
H ₂ SiO ₃	trioxosilicato (IV) de hidrógeno	ácido metasilícico
H ₆ Si ₂ O ₇	heptaoxodisilicato (IV) de hidrógeno	ácido disilícico
H ₄ SiO ₄	tetraoxosilicato (IV) de hidrógeno	ácido ortosilícico

• Oxoácidos del grupo de los térreos: B (+3) No se formula el ácido dibórico; sí el tetrabórico, que excede a este nivel.

•
$$B_2O_3 + H_2O \rightarrow HBO_2$$

•
$$HBO_2 + H_2O \rightarrow H_3BO_3$$

Compuesto	Sistemática	Tradicional
HBO ₂	dioxoborato (III) de hidrógeno	ácido metabórico
H ₃ BO ₃	trioxoborato (III) de hidrógeno	ácido ortobórico

CROMO Y MANGANESO: No sólo forman ácidos los no metales sino también muchos de los metales de transición, por ejemplo el Cr y Mn.

Nº de oxidación (+6): H ₂ CrO ₄	ác. crómico
Nº de oxidación (+6): H ₂ Cr ₂ O ₇	ác. dicrómico
Nº de oxidación (+6): H ₂ MnO ₄	ác. mangánico
Nº de oxidación (+7): HMnO ₄	ác. permangánico

Compuesto	Sistemática Tradicional	
H ₂ MnO ₃	trioxomanganato (IV) de hidrógeno	ácido manganoso
H ₂ MnO ₄	tetraoxomanganto (VI) de hidrógeno	ácido mangánico
HMnO ₄	tetraoxomanganato (VII) de hidrógeno	ácido permangánico

Compuesto	Sistemática	Tradicional
H ₂ CrO ₄	tetraoxocromato (VI) de hidrógeno	ácido crómico
H ₂ Cr ₂ O ₇	heptaoxodicromato (VI) de hidrógeno	ácido dicrómico

NOMENCLATURA DE LOS ACIDOS OXOACIDOS

NOMENCLATURA SISTEMÁTICA

Se utilizan los prefijos: mono-, di-, tri-, tetra-, etc., para indicar el número de átomos de oxígeno, a continuación se intercala el término –oxo-, luego la raíz del nombre latino del elemento X seguido de la terminación –ato; después, con números romanos y entre paréntesis, el estado de oxidación del elemento X y para finalizar se añade el término de hidrógeno.

Compuesto	Nomenclatura sistemática	
HClO	Oxoclorato (I) de hidrógeno	
HClO ₂	Dioxoclorato (III) de hidrógeno	
HClO ₃	Trioxoclorato (V) de hidrógeno	
HClO ₄	Tetraoxoclorato (VII) de hidrógeno	

prefijooxoprefijoNMe-ato (nº romano valencia) de H

NOMENCLATURA STOCK

Se utiliza la palabra ácido seguida de los prefijos: mono-, di-, tri-, tetra-, etc., que indican el número de átomos de oxígeno, terminados en -oxo. Seguidamente se escribe el nombre del elemento central terminado en -ico, indicando su número de oxidación en números romanos y entre paréntesis.

Compuesto	Nomenclatura stock
HClO	Ácido oxoclórico (I)
HClO ₂	Ácido dioxoclórico (III)
HClO ₃	Ácido trioxoclórico (V)
HClO ₄	Ácido tetraoxoclórico (VII)

Ácido prefijooxoprefijoNMe-ico (nº romano valencia)

NOMENCLATURA TRADICIONAL

Se utiliza la palabra ácido seguida de la raíz del elemento central –el no metal- con prefijos y sufijos indicando la valencia del no metal.

Compuesto Nomenclatura tradicio	
HClO	Ácido hipocloroso
HClO ₂	Ácido cloroso
HClO ₃	Ácido clórico
HClO ₄	Ácido perclórico

COMPARACION DE LAS TRES NOMENCLATURAS

Comp.	Sistemática	Stock	Tradicional
HClO	Oxoclorato (I) de hidrógeno	Ácido oxoclórico (I)	Ácido hipocloroso
HClO ₂	Dioxoclorato (III) de hidrógeno	Ácido dioxoclórico (III)	Ácido cloroso
HClO ₃	Trioxoclorato (V) de hidrógeno	Ácido trioxoclórico (V)	Ácido clórico
HClO ₄	Tetraoxoclorato (VII) de hidrógeno	Ácido tetraoxoclórico (VII)	Ácido perclórico

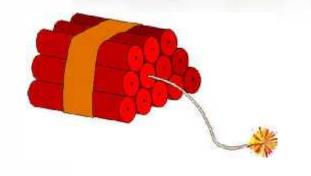
La IUPAC admite para determinadas sustancias los nombres de la nomenclatura tradicional. Esto se debe a la importancia (en la industria, el comercio, etc) de estos compuestos

	_
U	-
d	-
d	1
10	
U c	-
Ū,	-
d	-
d	-
d	
d	
0	-
U c	-
B.	-
d	-
d	-
d	
d	_
10	
U d	-
700	-
di	-
d	-
d	
d	
0	
00	-
U,	-
d)	-
d	-
d	_
d	_
0	
0	-
00	-
	-
6	-
0	-
0	-
di	
	-
die	P
Ū	-
W	-
0	-
0	J.,
ļ	10

Fórmula	Nomenclatura sistemática	Nomenclatura sistemática funcional	Nomenclatura tradicional
HNO ₃	Trioxonitrato (V) de hidrógeno		Ácido nítrico
HNO ₂	Dioxonitrato (III) de hidrógeno	Ácido dioxonítrico (III)	Ácido nítroso
H ₂ SO ₄	Tetraoxosulfato (VI) de hidrógeno	Acido tetraoxosulfúrico (VI)	Acido sulfúrico
H ₂ SO ₃	Trioxosulfato (IV) de hidrógeno	Ácido trioxosulfúrico (VI)	Ácido sulfuroso
H ₃ PO ₄	Tetraoxofosfato (V) de hidrógeno	Ácido tetraoxofosfórico (V)	Ácido fosfórico
HClO ₄	Tetraoxoclorato (VII) de hidrógeno	Acido tetraoxoclórico (VII)	Acido perclórico
H ₂ CO ₃	Trioxocarbonato (IV) de hidrógeno	Ácido trioxocarbónico (IV)	Ácido carbónico
HMnO ₄	Tetraoxomanganato (VII) de hidrógeno	Ácido tetraoxomangánico (VII)	Ácido permangánico
H ₂ CrO ₄	Tetraoxocromato (VI) de hidrógeno	Ácido tetraoxocrómico (VI)	Ácido crómico
H ₂ Cr ₂ O ₇	Heptaoxodicromato (VI) de hidrógeno	Ácido heptaoxodicrómico (VI)	Ácido dicrómico
H ₄ SiO ₄	Tetraoxosilicato (IV) de hidrógeno	Ácido tetraoxosilícico (IV)	Ácido silícico
H ₃ BO ₃	Trioxoborato (III) de hidrógeno	Ácido trioxobórico (III)	Ácido bórico

Usos de algunos de los ácidos oxácidos

Ácido nítrico


HNO₃

Usos: se usa en grandes cantidades en la industria de los abonos, colorantes, plásticos, explosivos, fabricación de medicamentos y grabado de metales. Efectos: muy tóxicos, cuando se calientan. Este producto es principalmente irritante y causa quemaduras y ulceración de todos los tejidos con los que está en contacto.

aulas.iesjorgemanrique.com

Ácido carbónico

H_2CO_3

Usos: se utiliza en la industria en forma. *Gaseosa*: para fabricación de bebidas carbonatadas (gaseosas), jardinería (invernaderos). *Líquida*: equipos de extinción de incendios, cámaras de refrigeración. *Sólida*: como hielo seco para fabricación de helados y alimentos congelados, uso en laboratorios y hospitales. Efectos: infecciones de piel, extremadamente irritante. Baja tolerancia al dolor. Efectos tóxicos producidos por la inhalación de cantidades excesivas del ácido carbónico. Puede ser también asfixiante.

www.fotosimagenes.org

www.ru.all.biz

ve.clasificados.com

Ácido sulfúrico

H₂SO₄

Usos: es utilizado para la fabricación de fertilizantes, detergentes, papel, la potabilización del agua, refinación de petróleo, procesamiento de metales. Efectos: veneno para el ser humano. Extremadamente irritante, corrosivo y tóxico, resultando por su rápida destrucción, causante de quemaduras severas. El contacto repetido con soluciones diluidas puede causar dermatitis. La inhalación repetida de vapores puede causar bronquitis crónica.

